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The present work discusses the most commonly occurring shape of the coherent
vortical structures in rapidly rotating stably stratified turbulence, under the quasi-
geostrophic approximation. In decaying turbulence, these vortices – coherent regions of
the materially-invariant potential vorticity – dominate the flow evolution, and indeed
the flow evolution is governed by their interactions. An analysis of several exception-
ally high-resolution simulations of quasi-geostrophic turbulence is performed. The
results indicate that the population of vortices exhibits a mean height-to-width aspect
ratio less than unity, in fact close to 0.8.

This finding is justified here by a simple model, in which vortices are taken to
be ellipsoids of uniform potential vorticity. The model focuses on steady ellipsoids
within a uniform background strain flow. This background flow approximates the
effects of surrounding vortices in a turbulent flow on a given vortex. It is argued that
the vortices which are able to withstand the highest levels of strain are those most
likely to be found in the actual turbulent flow. Our calculations confirm that the
optimal height-to-width aspect ratio is close to 0.8 for a wide range of background
straining flows.

1. Introduction
The quasi-geostrophic model contains the main dynamical features of rapidly

rotating stably stratified flows commonly found in the atmosphere and oceans. The
flow is fully described by the advection of a Lagrangian invariant, the ‘potential
vorticity’, together with a simple inversion relation giving the velocity field in terms
of the distribution of potential vorticity. In this model, the dynamics of turbulence
reduces principally to the interaction between coherent masses of potential vorticity,
or ‘vortices’. Over the past two decades, there have been many studies of quasi-
geostrophic turbulence, mainly computational, which have addressed both the spectral
and physical-space (vortical) properties of the flow. These studies, in part, sought to
test a theory of isotropic turbulence proposed by Charney (1971). This theory states
that spectral properties, and by implication flow properties, should have the same
statistical variation in all directions, though in a rescaled coordinate system in which
the height is stretched by the ratio of the buoyancy N to Coriolis f frequencies (both
taken to be spatially uniform). This theory is the basis for the idea that the typical
ratio of vertical to horizontal scales is O(f/N) in large-scale atmospheric and oceanic
motions.
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The computational studies, however, have not fully supported this theory.
McWilliams, Weiss & Yavneh (1994a) found that the potential vorticity tends to
condense into tall approximately columnar structures or vortices. On the other hand,
in Dritschel, de la Torre Juárez & Ambaum (1999b), more isotropic vortices were
found to emerge, even from initial conditions consisting of columnar vortices. This
is in agreement with the stability analysis of Dritschel & de la Torre Juárez (1996),
who showed that tall columnar vortices are generally unstable and break down into
flatter vortices.

The difference between these simulation results can be traced back to the initial
conditions used. Dritschel & Macaskill (2000) showed that a small to moderate
number of initially columnar vortices may remain columnar in a periodic domain,
despite the tall-column instability. However, upon doubling the domain width in each
direction (and likewise doubling the horizontal resolution), the columnar vortices may
break down into three-dimensional structures. In a wide enough domain, all columns
destabilize and the flow remains fully three-dimensional for long times. It is remarkable
that the initial diameter of vortices for which the tall-column instability is inhibited
can be as small as 5% of the domain width. Although the initial conditions used by
McWilliams et al. (1994a) were of smaller scale and of a different (random) character,
numerical diffusion acts strongly at early times to produce vortical structures of such
a width, and these subsequently begin to condense into two columnar structures,
which are stabilized by the periodic effects.

McWilliams et al. (1994a) noted that vortices emerge with a roughly spherical
shape at early times. Further analyses of this same simulation (McWilliams et al.
1994b; McWilliams et al. 1999) indicated first that the flow develops a spectral
anisotropy and furthermore that, in physical space, coherent vortices develop a mean
height-to-width aspect ratio of 0.83 ± 0.03, i.e. an oblate spheroid in the rescaled
reference frame proposed by Charney (1971). The latter result was obtained from a
moderate sample of vortices identified by a census procedure which excludes highly
deformed structures. Moreover, according to McWilliams et al., numerical diffusion
has an influence on their solution. It is therefore of interest to re-examine the shape
of vortices found in highly resolved simulations, in which the vortex population is
large enough to provide well-converged statistics.

We focus on what we consider to be generic initial conditions, consisting of a large
number of initially isotropic vortices which are much smaller than the domain width
to avoid the effects of periodicity. Our primary goal is to understand what determines
the mean shape of vortices in three-dimensional quasi-geostrophic turbulence. Recent
extraordinarily large computations have been conducted by Koudella, Dritschel &
McMullen (2002) using a fast parallel extension of the contour-advective semi-
Lagrangian (CASL) algorithm, introduced in Dritschel & Ambaum (1997). The
analysis presented below confirms that the mean height-to-width aspect ratio of
vortices in three different simulations is significantly less than unity, statistically
centred on a value of 0.8 in each case.

The present work justifies this result by showing that flat vortices are favoured
in quasi-geostrophic turbulence. Such vortices are found to be most capable of
withstanding the background strain flow arising from the surrounding vortices in the
turbulent flow. We model this background flow in an idealized way, retaining only
the leading-order effects of surrounding vortices on a given vortex. To that end, we
investigate steady ellipsoids of potential vorticity embedded in the flow created by a
single distant vortex arbitrarily positioned in space. Ellipsoids of potential vorticity
have frequently been used in the literature as a simple yet pertinent model of the
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coherent structures in quasi-geostrophic flows, see for example Meacham (1992),
Meacham et al. (1994), Hashimoto, Shimonishi & Miyazaki (1999), Miyazaki, Ueno
& Shimonishi (1999) and Miyazaki, Furuichi & Takahashi (2001). We use here a
formalism derived from the reformulation of the equations of motion of an ellipsoid
in McKiver & Dritschel (2003). This formalism enables us to find steady states for a
broad range of the parameters characterizing the vortex shape and the background
strain flow. The key idea of this work is to find the aspect ratio for the ellipsoid
corresponding to the maximum strain below which steady states can be found. Vortices
with this shape would be able to withstand the effects of the background strain better
than would vortices with any other shape. We argue that, in turbulence, vortices with
this shape will survive the longest, and therefore will be seen most frequently.

The paper is organized as follows. Section 2 introduces the quasi-geostrophic model
and describes the results of several numerical simulations performed using the CASL
algorithm. Section 3 reviews the ellipsoidal model and outlines the numerical approach
taken. Results are then presented for the maximum strain below which a steady state
can be found, for a fixed height-to-width aspect ratio of the ellipsoid. It is concluded in
§ 4 that vortices with an aspect ratio less than unity should be statistically predominant
in quasi-geostrophic turbulence, consistent with the numerical simulation results.

2. The numerical experiment
2.1. Mathematical formulation

The present work uses the quasi-geostrophic (QG) model, in which the potential
vorticity (PV) is materially conserved (in the absence of diabatic and dissipative
effects). Under the assumption that both the rotational and the buoyancy frequencies
f and N are constant, and after multiplying the vertical coordinate by the ratio N/f,
the governing equations are

Dq

Dt
= 0, (1)

∆ψ = q, (2)

u = −∂ψ
∂y
, v =

∂ψ

∂x
, (3)

where q is the PV, D · /Dt is the material derivative, and ∆ is the Laplacian (see
e.g. Gill (1982) for details of the model). Although Laplace’s operator is isotropic,
a natural anisotropy occurs in the flow owing to the lack of vertical advection – the
flow is layerwise two-dimensional. The vertical direction is therefore special, and we
cannot a priori expect flow isotropy.

The CASL algorithm uses a hybrid Lagrangian/Eulerian solution method for these
equations. PV is enclosed within horizontal contours which are explicitly advected, and
dissipated when they reach a small prescribed ‘surgical’ scale (to allow for topological
reconnections). This approach takes advantage of the stability of Lagrangian methods
and allows us to use time steps that are related to the inherently slow time scale present
in the flow, measured by the PV rather than by stability criteria (e.g. CFL) which
would force us to use a much smaller time step, see Cottet (1996) and Dritschel et
al. (1999b). On the other hand, the method benefits from the accuracy of an Eulerian
spectral approach when inverting the Poisson equation (2) for the streamfunction. A
complete discussion of the method can be found in Dritschel & Ambaum (1997), and
in Koudella et al. (2002) for the parallel algorithm.
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Resolution p Vmax/Vmin F ntot

5123 2 25 0.1 1000
6403 0.9 1000 0.1 2000

10243 — 1 0.08 5000

Table 1. Description of the initial conditions for the three CASL simulations.

2.2. Numerical results

Three simulations of QG turbulence have been performed in a triply periodic cubic
domain of equal dimensions (after the N/f scaling of z discussed above). The starting
conditions consist of uniform-PV spherical vortices, with an equal number having
q = +Q and q = −Q, with Q = 4π so that a unit of time corresponds to a ‘vortex
rotation period’. (The period of rotation for a column of uniform PV is 4π/|Q|, and
for a sphere it is 6π/|Q|.) The three simulations differ in their resolution (5123, 6403,
and 10243) and especially in the initial distribution of vortex sizes, to ensure that the
results are not dependent on the initial conditions chosen. The vortex volumes V were
selected from a number density distribution n(V ) ∝ V−p, with a specified ratio of the
maximum to minimum volume Vmax/Vmin, fraction F of the domain volume occupied

by the vortices, and total number of vortices ntot =
∫ Vmax
Vmin

n(V ) dV . The vortices are
randomly positioned in space, starting with the largest vortices, while taking care
that they do not overlap one another. The values of the parameters used are given in
table 1. Note that in the 10243 case, the value of p is immaterial since all the vortices
have the same size initially. The initial condition for the 6403 simulation is shown in
figure 1.

As for the numerical parameters, each simulation used the same time step ∆t =
0.025, a surgical scale of one-tenth of the basic grid scale, and a fine-grid/coarse-grid
ratio of 2 (the latter is used in converting the PV contours to gridded values). The
values of these parameters are those recommended in Dritschel & Ambaum (1997).
Judging from comparative studies (cf. Dritschel, Polvani & Mohebalhojeh 1999a),
they result in solutions which are much more accurate than those obtainable with
standard numerical methods (e.g. pseudospectral) using the same grid sizes.

The results of each simulation were analysed over the same time window, from
t = 250 to 350, and at intervals of 2 time units. By this time, the flow has relaxed to
a slowly evolving state of widely separated vortices, which only occasionally strongly
interact – for example, figure 2 shows the PV distribution in the 6403 simulation at
t = 300.

The analysis consists first of identifying all contiguous regions of PV, hereinafter
called ‘vortices’. (This simple identification procedure differs substantially from that
introduced by McWilliams (1990) and used in subsequent works.) Patches of PV in
adjacent vertical layers are considered contiguous if they are found to overlap one
another. Holes inside patches are not considered part of the vortex, e.g. when volume
is calculated. Next, the volumes and other properties of the vortices are calculated.
The volumes V are calculated by summing the areas of all contours (negative areas
correspond to holes) belonging to the vortex and then multiplying by the layer
thickness (or vertical grid size). These areas are computed from discrete contour
integrals, using the standard formula A = 1

2

∮
x dy − y dx. Then the centre X of

each vortex is computed from X = V−1
∫
x dV (taking into account periodicity), and
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Figure 1. A snapshot of the initial conditions for the 6403 simulation. The PV distribution is viewed
orthographically, at an angle of 60◦ from the vertical, and in the plane y = 0. From this view, we
can see the top and front faces of the domain. Positive PV is rendered a slightly darker shade of
grey than negative PV.

finally the vortex shape is computed by fitting an ellipsoid having the same ‘second
moments’ (volume integrals of x̂2, x̂ŷ, x̂ẑ, ŷ2, ŷẑ, and ẑ2, where x̂ = (x̂, ŷ, ẑ) ≡ x−X ).

The principle diagnostic of interest here is the vortex height-to-width aspect ratio,
h/r. This is computed from the above basic diagnostics as follows. We first compute
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Figure 2. A snapshot of QG turbulence at t = 300 from the 6403 simulation,
rendered as in figure 1.

h from h =
√

5Mzz/V , where Mzz is the volume integral of ẑ2 over the vortex – for
an ellipsoid in standard position, this reduces to the half-height of the vortex. Then,
the mean horizontal radius r is computed from the volume constraint, V = 4

3
πr2h.

Combining these formulae, we have h/r = ( 4
3
π)1/2(5Mzz)

3/4V−5/4. Again, this reduces
to the correct expression for an ellipsoid, even when the ellipsoid is tilted with respect
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Figure 3. Mean height-to-width aspect ratio h/r versus log10 R in the CASL simulations at
resolutions ×, 5123; N, 6403; H, 10243.

to the vertical (then the value of h does not change, since the vortex must still occupy
the same height range because of the lack of vertical motion).

After computing h/r for all vortices, we form an average height-to-width aspect

ratio h/r over selected ranges of vortex volumes, or bins. Specifically, the logarithm
(base 10) of the mean vortex radius R ≡ (3V/4π)1/3 is chopped into 40 bins of equal
length, between the grid size and the radius of the largest vortex found in the time
period sampled. In each bin, the values of h/r are accumulated and then averaged
once the sample size in each bin is determined. It is noteworthy that there are many
more small vortices than there are large ones, so the sample size is marginal for large
vortices (and therefore the statistics are not reliable there). However, the sample size
for the small vortices is large, as indicated below.

The results of the three simulations are presented in figure 3. The three simulations
all give a mean aspect ratio of approximately 0.8 for all but the largest vortices in
the population. The results are insensitive to the time period sampled (we have also
examined the statistics at 150 time units later), although the statistics for the largest
vortices are probably not reliable, owing to the small number of such vortices. On
the other hand, the sample size for small vortices is more than ample: the overall
sample sizes are 285 759 vortices for the 5123 case, 655 838 vortices for the 6403 case,

and 2 551 114 vortices for the 10243 case. The upturn towards h/r = 1 for the larger
vortices does appear to be significant – it is observed in all three simulations as well
as in different sampling periods.

To judge the significance of these results better, we have computed the probability
density distribution of h/r for the three simulations over several ranges of vortex
radii R. This is done by dividing the range 0 < h/r < 2.5 into 50 equal-width bins
and counting the number of vortices falling into each over the time period sampled.
The total sample size is then used to normalize the bin counts to give the probability
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Figure 4. Probability density P (h/r) versus h/r for the three simulations (using the same symbols
as in the previous figure), and (a) for vortices with radii R exceeding two grid lengths; (b) for the
largest vortices (having a volume at least a tenth of the largest vortex volume).

density P (h/r). The results for the three simulations are presented in figure 4(a) for
all vortices having a radius of at least two grid lengths, and in figure 4(b) for the
upper tenth (in vortex volume) largest vortices, Rmax/101/3 < R < Rmax, where Rmax
is the maximum vortex radius over the entire sampling period. In figure 4(a), it is
remarkable how well the data from the three simulations collapse onto one another,
and exhibit a clearly defined peak and mean around h/r = 0.8. The overall means and
r.m.s. differences, together with the sample sizes, are given in table 2. The results are
in very close agreement, and clearly indicate that vortices with h/r < 1 are dominant.
Approximately 80% of the vortices have h/r < 1. Moreover, fewer than 10% of the
vortices have h/r < 0.5, and only about 1% of the vortices have h/r > 2. Flat vortices
are therefore not common and tall vortices are decidedly rare. The results for the
largest vortices, see figure 4(b), are much less robust owing to the much smaller
sample sizes (see table 3). Although there is evidence that the largest vortices have a
mean aspect ratio of order unity or slightly greater, it is premature to draw any firm
conclusions. If we exclude these large vortices from the original distribution shown
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Resolution h/r (h/r − h/r)rms Oblate fraction Flat fraction Tall fraction Sample size

5123 0.8505 0.3980 0.7767 0.1016 0.0193 45 663
6403 0.8319 0.3498 0.8013 0.0895 0.0129 105 113

10243 0.8352 0.3498 0.7922 0.0854 0.0132 462 293

Table 2. Statistics for all vortices with R > twice the grid size. ‘Oblate fraction’, ‘Flat fraction’ and
‘Tall fraction’ refer to the fraction of vortices having h/r < 1, h/r < 0.5 and h/r > 2, respectively.

Resolution h/r (h/r − h/r)rms Oblate fraction Flat fraction Tall fraction Sample size

5123 1.0804 0.5351 0.5957 0.0000 0.1118 830
6403 1.0366 0.3480 0.6356 0.0140 0.0427 1778

10243 1.1851 0.4783 0.4264 0.0000 0.0716 9895

Table 3. Statistics for vortices having a volume at least one-tenth of the largest vortex volume.

Resolution h/r (h/r − h/r)rms Oblate fraction Flat fraction Tall fraction Sample size

5123 0.8462 0.3937 0.7800 0.1035 0.0176 44 833
6403 0.8284 0.3488 0.8041 0.0908 0.0124 103 335

10243 0.8275 0.3424 0.8003 0.0873 0.0119 452 398

Table 4. Statistics for all vortices with R > twice the grid size but excluding the largest vortices
analysed.

in figure 4(a), there is no significant change in the form of P (h/r), nor in the basic
statistics (see table 4). The upshot is that, for all but perhaps the largest vortices,
there is a strong tendency for vortices to have an aspect ratio of less than unity.

3. The steady states
We next present a simple model that appears to explain the numerical simulation

results above.

3.1. Formalism and numerical approach

Following the formalism described in McKiver & Dritschel (2003), we investigate
steady or equilibrium ellipsoids of uniform PV within both a background horizontal
strain and a vertical shear. In general, the background flow changes in time, but here
we adopt a steadily translating and rotating frame of reference and assume steady
values for the background strain and shear.

The key aspects of the analytical and numerical procedures are now presented.
Let A be the symmetric 3× 3-matrix in terms of which the equation of the ellipsoid
reads

xAxT = 1, (4)

and a, b and c be the axis half-lengths. Let B =A−1. Let S be the velocity gradient
matrix ∇u, and let us assume that the flow is linear, u =Sx. Note that S =Sb +Sv

itself is the sum of the background and the ellipsoid contributions. The temporal
evolution of the ellipsoid is obtained by taking a time derivative of (4) and using
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dAB/dt = 0; the result is

dB
dt

= BST+SB, (5)

where the superscript T denotes transpose.
In the present case, we set the PV of the ellipsoid to 1. Following Meacham (1994),
Sv at the boundary of the ellipsoid is given by

Sv =LMFMT , (6)

where

F =
abc

3

 RD(b2, c2, a2) 0 0

0 RD(c2, a2, b2) 0

0 0 RD(a2, b2, c2)

 , (7)

with

RD(α, δ, ε) =
3

2

∫ ∞
0

dt√
(t+ α)(t+ δ)(t+ ε)3

, (8)

being the elliptic integral of the second kind, M is the matrix whose columns are the

three unit vectors â, b̂ and ĉ directed along the axes of the ellipsoid, and

L =

 0 −1 0
1 0 0
0 0 0

 (9)

arises from the relation u =L∇ψ between the velocity and the streamfunction in (3).

The axis lengths a, b, c and the unit vectors â, b̂, ĉ are determined from B by solving
the eigenproblem

Bâ = a2â,

Bb̂ = b2b̂,

Bĉ = c2ĉ.

 (10)

The local background flow ub = Sbx due to a distant ‘source’ vortex is obtained
from a second-order Taylor series expansion of the source streamfunction ψb(x) in
x/D – where D is the distance between the centres of the two vortices – about the
centre (x = 0) of the ‘target’ ellipsoid. This gives

Sb = γ

 0 1
2
(1 + 3 cos 2θ) + β 3

2
sin 2θ

1− β 0 0

0 0 0

 , (11)

where γ = κb/D
3 is the ‘strain rate’, κb = (4π)−1

∫∫∫
qb dV is the vortex circulation

(scaled by 4π), β is the ratio (κb+κv)/κb quantifying the strength ratio of the vortices,
and finally θ is the angle for which the vertical separation between the vortices is
D sin θ (details may be found in McKiver & Dritschel 2003).

Here, without loss of generality, we take κv > 0. Then, when β > 1, we must
have κb > 0 and thus γ > 0, while for β < 1, we must have κb < 0 and thus γ < 0.
Hence, β > 1 characterizes like-signed vortex interactions, whereas β < 1 characterizes
opposite-signed ones. Note that as β → 1, |κb/κv| → ∞, corresponding to the special
cases of ‘adverse’ shear for γ > 0 and cooperative shear for γ < 0. Note also that
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two identical like-signed vortices have β = 2, whereas two identical opposite-signed
vortices have β = 0.

The absence of vertical advection implies that the matrix element B3,3 remains
constant (dB3,3/dt = 0). Then, considering the symmetry properties of B, there are
only five variables describing the ellipsoid in this background flow. As Sv depends on
B, the problem of finding a steady ellipsoid consists of solving the following nonlinear
system of equations:

BST +SB = 0. (12)

This is done numerically using an iterative linear method. From a given nth guess
for the shape of the target ellipsoid, we calculate the corresponding velocity gradient
matrixS. Then, the linearized system corresponding to (12) is solved to evaluateBn+1,
the (n+ 1)th estimate for the steady state. The system obtained directly from (12) has
a zero-determinant and thus cannot be inverted. Consequently, one equation (of the
five) is suppressed and another constraint is imposed: the conservation of the volume
of the ellipsoid between two iterations. Since the determinant |B| = (abc)2, and since
the volume of the ellipsoid is 4

3
πabc, we can impose this constraint by linearizing |B|.

The volume is here set to 4
3
π for all cases. The iterative procedure is repeated until the

r.m.s. difference between the five independent coefficients of Bn and Bn+1 becomes
less than 10−10. Volume conservation and the absence of vertical advection ensure
that the height-to-width aspect ratio h/r of the ellipsoid is unchanged throughout the
procedure.

Each investigated case is characterized by four parameters: the aspect ratio of the
target vortex h/r, the strength ratio β, the angle θ and the inverse strain rate λ = 1/γ.
For a given couple (h/r, β), we have determined the minimum, or critical, inverse
strain rate λc for any angle θ. This corresponds to the limit value of λ below which
no steady states can be found. The range of the parameter θ is restricted to [0, 1

2
π]

because of symmetry. At θ = 1
2
π, corresponding to vortices aligned in the vertical

direction, the critical inverse strain rate is always found to be zero.
In a turbulent flow, we consider the angle θ to be random. This has been verified

in the simulations presented in the previous section by computing the mean value of
θ, denoted θ̄, between a given vortex and the surrounding vortex which induces the
largest strain rate magnitude |γ|. For a random vortex distribution, θ̄ = θ̄ran ≡ 1

2
π− 1

(cf. McWilliams et al. 1999). In figure 5, θ̄, is plotted for both like-signed and opposite-
signed vortices, as a function of time (for 249 6 t 6 369) in the 10243 simulation. The
small scatter is within the error bar estimated from the sample size, and is therefore
not significant. On the other hand, in the simulation analysed by McWilliams et al.
(1999), θ̄ for like-signed vortices was found to increase from θ̄ran at early times (after
the first eighth of the simulation period analysed), indicating the tendency to form
columnar arrays of vortices, not present in our simulations. (In fact, McWilliams et
al. (1999) computed θ̄ from the closest vortex, not that which induces the largest
strain rate. If we use the closest vortex, then for like-signed vortices we find a value of
θ̄ significantly less than θ̄ran. This is due to the small-scale debris that often surrounds
a vortex, but which is absent in the analysis of McWilliams et al. (1999).)

Taking, therefore, θ to be random in a turbulent flow, we measure the robustness
of a family of vortices, characterized by the couple (h/r, β), by its mean inverse strain

rate λc:

λc =
2

π

∫ π/2

0

λc(θ) dθ. (13)

The smaller the value of λc, the more robust the vortex is.
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Figure 5. Mean angle between a ‘target’ vortex and the vortex inducing the highest strain on this
target vortex, for ——, like-signed vortices, and - - - -, opposite-signed vortices, versus time in the
10243 simulation.

3.2. Numerical results

We now present the numerical results. We have studied nearly 30 families of vortices
of aspect ratio h/r between 0.1 and 2, with increments in h/r less than or equal to
0.1. For each aspect ratio, we have considered values of the strength ratio β from
−1.9 up to 12. Then, for a given angle θ, the calculation is started with a small strain
rate (γ = ±10−3) and using as a first guess for the target vortex one with a circular
horizontal cross-section. This choice is justified by the fact that, in the absence of
background strain, a vortex with a circular cross-section is indeed a steady state.
After the linear system converges on a steady state, |γ| is slightly increased by 10−4

and the procedure is repeated until the critical value of the strain rate γc is reached.
Then, the angle θ is itself increased by 0.1◦ until θ = 89.9◦.

Figure 6 illustrates the dependence of the critical strain rate γc on the angle θ for
(a) equal strength vortices and (c) opposite strength vortices. Figure 6(b) shows the
results for the special case of pure shear, β = 1 (γ is taken as positive). In all cases,
γc exhibits a singularity as θ → 1

2
π. The singularity is weak (integrable) in general, as

seen in figures 6(a) and 6(c). However, near β = 1, separating like-signed and opposite
signed interactions, the singularity is stronger, as can be seen in figure 6(b). In this
case, at θ = 89.9◦, the critical strain is γc = 47.27. Such high values of strain are
never observed in the turbulent simulations. In figure 6(c) (and for all opposite-signed
vortices), there is an intermediate kink in the curve associated with a change in the
orientation of the vortex; to the left of this kink, an equilibrium vortex is flattened
in the direction pointing to the source vortex (with strength κb), whereas to the right,
an equilibrium vortex is elongated in this direction. Like-signed vortices are always
elongated in the direction pointing to the source vortex.

We now examine the dependence of the mean critical inverse strain rate λc on
the aspect ratio h/r for different values of β. The results are presented in figures 7
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Figure 6. Critical strain rate γc versus the angle θ for h/r = 1 and (a) β = 2, (b) β = 1, (c) β = 0.

and 8 for like-signed and opposite-signed interactions, respectively. (Note, in the latter
−λc is shown since the strain is always negative.) For like-signed interactions, all the
curves have a well-defined minimum at h/r ≈ 0.8 (marked by a diamond), with a
weak increase for large values of β. Large β corresponds to a source vortex which is
much smaller than the target vortex, and this kind of interaction is highly unlikely to
be destructive. The relevant values of β are O(1), and for these there is little variation
in the mean aspect ratio. For opposite-signed interactions (figure 8), the minimum in
−λc occurs for h/r ≈ 1.1, increasing to about 1.2 as β → 1 (note: λc = 0 when β = 1
in this case).

There is thus seen to be a fundamental difference between like-signed and opposite-
signed interactions. Note, however, that the implied strain rate magnitudes are sig-
nificantly greater for opposite-signed interactions than for like-signed ones. That is,
it takes much more strain to disrupt a vortex when that strain is due to a vortex of
opposite sign than when it is due to a vortex of the same sign. Therefore, if opposite-
signed interactions matter in determining the favoured aspect ratio, then we would
expect to see in the turbulence simulations that they are accompanied by significantly
higher strain rate magnitudes. Figure 9 shows the probability density of the largest
strain rate magnitudes found in like-signed and in opposite-signed interactions over
the time interval 249 6 t 6 369 in the 10243 simulation. Both are strongly peaked
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Figure 7. Average inverse critical strain rate λc versus the height-to-width aspect ratio h/r for
like-signed vortex interactions β > 1 (with increments dβ = 0.1 between plotted curves except for
the last three curves, corresponding to β = 6, 9 and 12). �, the minimum of λc for each value of β,
obtained from a second-order polynomial interpolation in h/r around the observed minimum.

at |γ| ≈ 0.0046, but are otherwise broadly similar. If anything, the largest strain rate
magnitudes are found most commonly for like-signed interactions – see figure 10,
which plots the ratio of the like-signed and opposite-signed probability densities.
Hence, opposite-signed interactions are not important in determining the favoured
aspect ratio. We have made certain of this by additionally performing simulations of
opposite-signed vortices with h/r = O(1) in a wide variety of configurations. In no
case do the interactions result in a change in the shape of one of the vortices, even
when the two vortices are initially touching.

In summary, this simple model of a steady ellipsoid predicts a favoured height-to-
width aspect ratio of around 0.8 for interactions between vortices of the same sign.
This is remarkably close to the value 0.8 observed in the CASL simulation results
of QG turbulence, over a broad range of background flow situations. Moreover, the

upturn towards h/r = 1 observed in figure 3 for the larger vortices, though statistically
less robust, is consistent too with the large β results in figure 7. Large vortices would
frequently find themselves interacting with smaller vortices, and this interaction has
large β = (κb + κv)/κb. Intermediate and small vortices, on the other hand, live in



The shape of vortices in quasi-geostrophic turbulence 189

0 1 2

h/r

50

100

150

200

250

–λc

Figure 8. Average inverse critical strain rate −λc versus the height-to-width aspect ratio h/r for
opposite-signed vortex interactions β < 1 (with increments dβ = 0.1 between plotted curves).
�, minimum of −λc for each value of β.

an environment dominated by comparable or larger vortices, and these interactions

are characterized by β = O(1), for which our simple model gives h/r ≈ 0.8. Indeed,

when β = 1, this model gives h/r = 0.82096. Note, finally, the steep increase of λc
as h/r −→ 0. This implies that very flat vortices are unlikely to be found in QG
turbulence, and this again agrees with the CASL simulations results (cf. figure 4).

4. Conclusions
The numerical simulation results presented indicate that the mean shape of vortices

is an oblate spheroid, having a rescaled height-to-width aspect ratio of less than unity.
An analysis of several highly accurate numerical simulations, conducted using the
CASL algorithm at resolutions up to 10243, implies that the mean height-to-width
aspect ratio is close to 0.8f/N, and that approximately 80% of all vortices are oblate.
These results were found at three different resolutions and for various time sampling
periods, with very large sample sizes (exceeding 2 500 000 vortices in the analysis of
the 10243 simulation).

These results are further confirmed using a simple model. In this model, we
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- - - -, opposite-signed interactions over the time interval 249 6 t 6 369 in the 10243 simulation.
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Figure 10. Ratio of the like-signed and opposite-signed probability densities shown in figure 9,
as a function of the largest strain rate magnitude |γ|max.
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focus on the equilibrium states for a vortex embedded in a background straining
flow, approximating the leading-order effects of surrounding vortices. The simple
background straining flow considered is that generated by a single distant vortex
arbitrarily positioned in space, and the target vortex is taken to be an ellipsoid.
From a detailed analysis of all possible equilibria over a wide range of possible
straining flows, we have shown that vortices with a rescaled height-to-width aspect
ratio less than unity are best able to resist the highest levels of background strain.
Furthermore, for small to intermediate sized vortices, the most common aspect ratio
is close to 0.8f/N, which agrees very well with the results of the full numerical
simulations. We conclude from these results, obtained in two entirely different ways,
that the characteristic shape of vortices in QG turbulence is an oblate spheroid after
stretching the vertical coordinate by N/f.

The simple model implies that there is a significant difference between the effects of
horizontal and vertical shear, with the latter being a little more destructive on average.
Vertical shear tends to limit the height of vortices, whereas horizontal shear tends
to limit their width. Since the two types of shear are present equally in a turbulent
flow, the difference between them can only be due to the lack of vertical advection
in quasi-geostrophic flows. We conjecture that this difference is due to the inability
of material points on the vortex to rotate vertically in response to vertical shear.
On the other hand, material points can rotate horizontally in response to horizontal
shear, and perhaps this freedom permits the vortex to more easily resist the effects
of horizontal shear. Points at the vertical extremities of the ellipsoid can only remain
there, whereas points along horizontal contours can move freely around.
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